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Abstract
It is well known that the exchange–correlation (XC) potential at a metal surface
has an image-like asymptotic behaviour given by −1/4(z − z0), where z is
the coordinate perpendicular to the surface. Using a suitable fully non-local
functional prescription, we evaluate self-consistently the XC potential with the
correct image behaviour for simple jellium surfaces in the range of metallic
densities. This allows a proper comparison between the corresponding image-
plane position, z0, and other related quantities such as the centroid of an induced
charge by an external perturbation. As a by-product, we assess the routinely
used local density approximation when evaluating electron density profiles,
work functions, and surface energies by focusing on the XC effects included
in the fully non-local description.

1. Introduction

The Kohn–Sham (KS) formulation [1] of density functional theory (DFT) [2] is presently the
method of choice to evaluate ground-state properties in condensed matter physics. Under this
KS formulation, the key quantity is the so-called exchange–correlation (XC) energy functional,
EXC[n], where the main part of the quantum many-body effects are included. However, in
actual calculations such a functional must be approximated [3, 4]. Fortunately, and this is
the main reason for the popularity of the KS-DFT, simple prescriptions like the local density
approximation (LDA) [1] or the generalized gradient approximation (GGA) [5, 6] provide
accurate results when evaluating the structural properties of a wide variety of systems. On
the other hand, the static implementation of the KS method is also the routine starting point
for the theoretical study of excited-state properties, either using the time-dependent extension
of DFT or many-body perturbation theory [7, 8]. This requires accurate KS eigenfunctions
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and eigenenergies or, equivalently, a functional approximation to EXC[n] exhibiting a well-
behaved functional derivative (XC potential) vXC(r). The commonly used LDA and GGA are
rather crude approximations to the actual XC energy functional because the highly non-local
and non-analytical character of the electron–electron correlations (in the sense that they do
not depend trivially on the electron density) are not described at all by these models. This
limitation is evident when analysing the corresponding XC potentials and, as a consequence,
there have been numerous attempts to formulate better approximations to the XC functional.
These non-local prescriptions are built either by including more sophisticated dependences on
the electron density [9–16] or, more recently, by incorporating suitable dependences on the KS
eigenfunctions and eigenenergies themselves [17–22].

One of the most evident signatures of the non-local character of the XC functional is the
fact that the XC potential vXC(r) exhibits an image-like asymptotic behaviour at a metal surface,
−1/4(z − z0) (z being the coordinate perpendicular to the surface and z0 the location of the
effective image plane) [23, 24]. Although it seems that such a behaviour has minor importance
when evaluating ground-state properties [25, 26], its proper description is definitely needed
to study problems like tunnelling [27, 28] or surface image states [29–31]. Therefore, the
search for a DFT scheme able to provide this image-like decay has been a challenge for many
years [32–37], not only to avoid the inclusion of empirical ad hoc procedures in theoretical
surface physics [38], but also due to its basic interest in DFT foundations. Only recently,
Garcı́a-González et al proposed a method based on a physically well motivated modification
of the so-called weighted density approximation (WDA), which we called momentum-WDA
(mWDA), fulfilling this important property [15, 16]. However, no systematic analysis of results
based on self-consistent calculations had been carried out, hence making impossible a complete
assessment of this novel functional model. This is the main objective of the present paper.

This paper is structured as follows. After a brief summary of the theory (section 2), we will
present fully self-consistent mWDA-KS calculations of simple jellium surfaces in the range of
metallic densities (rs = [3/(4πn)]1/3 = 2–6, n being the jellium density). In section 3 we
will focus on the structural properties (electron density, work function and surface energy)
whereas section 4 will be devoted to a detailed discussion of the image-like behaviour of the
XC potential. The corresponding conclusions will close this paper. Hartree atomic units will
be used throughout the paper, unless otherwise specified.

2. Theory

It is well known that the XC energy functional can be written as

EXC[n] =
∫

dr n(r) εXC(r) =
∫

dr n(r)
∫

dr′ n(r′) G(r, r′)
2 |r′ − r| , (1)

where εXC(r) is the XC energy per particle at a point r, and G(r, r′) is the integrated pair
correlation function (ipcf). The LDA and extensions thereof are based on the functional
modelization of εXC(r). In contrast, the WDA [9, 10, 12] uses the hypothesis that, for any
inhomogeneous electron system, the ipcf can be constructed from a scaling of the ipcf of an
homogeneous electron gas with density n, Ghom(n, |r − r′|). Specifically,

G(r, r′) � Ghom(ñ(r), |r′ − r|), (2)

where the weighted density ñ(r) is obtained by imposing the sum rule∫
dr′ n(r′) G(r, r′) = −1. (3)

We should note that the EXC[n] functional given by equation (1) is formally exact and the
approximation (2) for the ipcf does not imply any restriction for the types of system we can
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study with this approach. So, the formalism can be used to describe a general realistic system,
although we will only study jellium surfaces. It has been shown that the scaling hypothesis (2)
is actually a good approximation for bulk systems [39]. Moreover, the WDA fulfils some exact
features beyond the scope of the LDA and GGA. First, the WDA XC potential has the correct
−1/r asymptotic behaviour for finite systems [13]. Second, the WDA is designed to capture
effects due to the inhomogeneity of the electron densities [40–42], where the LDA/GGA is
not well defined. Finally, although they do not cancel exactly, the self-interaction errors are
much smaller than in the case of LDA/GGA. This explains why the WDA offers a superior
performance when studying, for instance, transition-metal and rare-earth materials [43–45].

Unfortunately, since the ipcf for an homogeneous electron gas has spherical symmetry,
the WDA ipcf GWDA(r, r′) is also spherically symmetric. This is not a serious drawback
when considering bulk materials and finite systems (atoms, molecules, clusters). However,
it has important consequences in semi-infinite systems like surfaces and slabs. In fact, for
a metal surface the ipcf centred deep inside the vacuum shows a large deformation [46] that
cannot be described by the WDA. As a result, the corresponding WDA XC potential behaves
as −1/2(z − z0) [35].

This limitation can be circumvented by a suitable modification of the WDA
(mWDA) [15, 16] which provides a more realistic description of the ipcf for semi-infinite
electron systems. In the mWDA, G(r, r′) is approximated by the expression

G(r, r′) � Ghom(ñ(r), |H(r) (r′ − r)|), (4)

where now H(r) is a deformation matrix and ñ(r) is the weighted density. For bulk and finite
systems, H(r) is set to unity, hence recovering the original WDA. However, for semi-infinite
and slab geometries, the deformation matrix is given by

H(r) =
( h−1/2(r) 0 0

0 h−1/2(r) 0
0 0 h(r)

)
(5)

(we always consider that z is the coordinate perpendicular to the surface or the slab). Therefore,
for each point r we need to evaluate ñ(r) and the deformation function h(r). This can be done
by imposing the sum rule (3) and the approximate ansatz for the shape of the ipcf at a metal–
vacuum interface,

∫
dr′ (z ′ − z)2

|r′ − r|2 n(r′) G(r, r′) = −1

3
. (6)

Note that both ñ(r) and h(r) are auxiliary quantities that need to be calculated for each point in
real space in each iteration of the self-consistent calculation. The corresponding XC potential
vXC(r) is then expressed by the analytical functional differentiation of (1). By construction,
the mWDA XC potential recovers the right asymptotic behaviour −1/4(z − z0) at a metal
surface [15]. Moreover, for a simple jellium metal surface, the translational invariance along
the xy plane allows a great simplification of all the above expressions [16] and a fully self-
consistent mWDA-KS calculation is only slightly more expensive than using the standard
WDA. For practical purposes, in the evaluation of Ghom(n, |r−r′|) we use the parameterization
proposed in [12] that ensures the required numerical stability for the evaluation of vXC(r) deep
inside the vacuum. This quite simple parameterization fits very well other more sophisticated
forms [47, 48] in the range of metallic densities. The XC energies of the homogeneous electron
gas, when required, are calculated using the parameterization by Perdew and Wang [49].
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Figure 1. Upper panel: self-consistent Kohn–Sham densities for a jellium surface (rs = 4) using
the mWDA (——), the WDA (— · —), and the LDA (- - - -) functionals. The additional dotted and
dash–dotted lines show the difference 10×[n(z)mWDA−n(z)LDA] and 10×[n(z)mWDA−n(z)WDA],
respectively. Lower panel: the three corresponding vXC potentials for the same jellium system. The
open circles represent the asymptotic image-like behaviour −1/4(z − z0) with z0 = 1.2.

3. Surface ground-state properties

To mimic a metal–vacuum interface, we have considered finite jellium slabs with thickness L
ranging from 8rs to 16rs. Although L = 8rs is enough to describe qualitatively the surface
properties, specific numerical values depend very sensitively on L due to the filling of new
sub-bands that appear when increasing L. Therefore, pure surface properties that actually
correspond to a semi-infinite system have to be obtained by careful numerical extrapolation
procedures [50, 51] of the data corresponding to finite slab geometries.

As a first illustration, in the upper panel of figure 1 we compare the electron density profiles
obtained after self-consistent KS calculations using the LDA, the WDA, and the mWDA for an
rs = 4 metal surface. We may see that there are only marginal differences between the WDA
and the mWDA densities, hence ensuring that the modification of the shape of the ipcf given by
the mWDA is only important far outside the bulk. Therefore, the small differences with respect
to the LDA density (that mainly appear at the first Friedel peak with slight depressions in the
remaining Friedel oscillations) can be solely attributed to changes in the XC potential in the
interface that were already described by the standard non-local WDA. This can be observed in
the lower panel of figure 1, where we plot the corresponding self-consistent XC potentials. As
expected, the only noticeable discrepancy between the WDA and the mWDA potentials is the
different asymptotic behaviours: −1/2z + o(z2) for the WDA and −1/4z + o(z2) (the correct
one) for the mWDA.

A simple way to quantify the differences between several self-consistent densities is the
evaluation of the work function (defined as the difference between the vacuum and the Fermi
energy levels). The work function has an XC contribution (which is a bulk property and
does not depend on the functional model since the LDA, WDA, and mWDA are exact in the
homogeneous limit) plus an electrostatic one determined by the electron density profile [25].
As a consequence (see table 1), the WDA and mWDA work functions are practically the same,
whereas the almost negligible deviation (less than 0.1 eV) with respect to the LDA values are
just the consequence of the small differences between the self-consistent densities described
above.

4



J. Phys.: Condens. Matter 19 (2007) 266008 J Jung et al

Table 1. Work functions � (in eV) for simple metal surfaces. The work function is rather
insensitive to the functional model and there are not any relevant discrepancies between the non-
local WDA and mWDA results.

rs 2 3 4 5 6

mWDA 3.87 3.41 2.95 2.57 2.27
WDA 3.90 3.42 2.95 2.57 2.27
LDA 3.79 3.36 2.90 2.53 2.24

Table 2. The surface energy and its contributions (in erg cm−2) calculated on different self-
consistent Kohn–Sham density profiles. σtot is the total surface energy, σS and σel are the kinetic
and electrostatic contributions, respectively. The XC contributions, σXC, are evaluated with different
functional approximations (LDA, WDA, and mWDA), and the corresponding self-consistent values
are highlighted. σEXX is the exchange contribution to the surface energy calculated from the exact
expression in terms of Kohn–Sham orbitals. Finally, the last column (σ ACFDT

XC ) is the sum of σEXX

and the ACFDT correlation contribution reported in [51] (both evaluated using LDA wavefunctions
as an input).

rs σtot σS σel σLDA
XC σWDA

XC σmWDA
XC σEXX σACFDT

XC

Self-consistent LDA density

2 −869 −5496 1275 3355 3315 3337 2624 3422
3 222 −704 163 764 763 770 526 788
4 162 −140 41.4 262 264 267 157 273
5 97 −30.4 16.7 111 114 116 57.0 116

Self-consistent WDA density

2 −913 −5490 1269 3342 3312 3334 2627
3 220 −705 166 761 760 767 525
4 164 −142 44.7 260 262 265 155
5 99 −31.9 19.5 109 112 114 55.1

Self-consistent mWDA density

2 −891 −5494 1273 3358 3312 3333 2633
3 227 −708 168 766 761 768 528
4 167 −143 45.1 263 263 266 158
5 101 −33.1 19.6 112 113 115 57.4

Once we have evaluated the self-consistent density profiles it is possible to calculate the
surface energy σtot and its corresponding contributions: kinetic (σS), electrostatic (σel), and
exchange–correlation (σXC). Since the mWDA can be regarded as the most accurate functional
method to evaluate the XC potential (and, consequently, the electron density) at a metal surface,
we can estimate the errors appearing in σS and σel due to simpler approximations like the LDA.
As we can see in table 2, there are some differences if we consider σS and σel separately.
However, they tend to cancel each other, resulting in a marginal difference (of the order of
1 erg cm−2) in the total surface energies.

Actually, the discrepancies between the total LDA, WDA, and mWDA surface energies
(also shown in table 2) are mainly due to the different nature of the approximations to the
XC energy which, on the other hand, is also quite stable under changes in the self-consistent
density profiles. The WDA lowers the LDA results for σXC with the exception of the low-
density limit (higher rs). The mWDA trend is the opposite since, except for rs = 2, the
mWDA gives greater XC contributions than the LDA. Nevertheless, the discrepancies among
the different results are not dramatic, thus confirming the fact that jellium surface energies
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are very robust quantities regardless of the functional approximation used [52]. Then, this
fair agreement between the self-consistent mWDA and LDA energies can be seen as a further
confirmation of the reliability of density functional methods when evaluating surface energies.
In fact, it is now believed [53–55] that existing diffusion quantum Monte Carlo results for the
surface energy [46] are contaminated by some convergence problems. Thus, the most reliable
XC contributions to the jellium surface energies have been obtained so far using techniques
based on time-dependent DFT [50, 51, 53]. As it is explained in detail in these references,
the exchange contribution is calculated using the exact expression in terms of the occupied
KS orbitals (which we will label as σEXX), whereas the correlation part is obtained through the
adiabatic-connection fluctuation–dissipation theorem (ACFDT) [56]. The total XC contribution
to the surface energy so obtained, σ ACFDT

XC , is greater than the LDA and mWDA ones, but the
deviations are always less than 5% (a rather small amount considering that the surface energy
is actually a binding energy).

However, since accurate diffusion quantum Monte Carlo results are still lacking, the
ACFDT prescription does not provide the definitive answer to the long-standing surface energy
puzzle. The two main drawbacks of this method are the absence of self-consistency (the KS
orbitals used are generally the LDA ones) and the description of the so-called XC kernel at
an approximate level (see the general reviews [7] and [8] for a deeper discussion about the
latter). Certainly, the calculations presented in this article cannot give any clue regarding the
quality of the XC kernel, but can be useful to quantify the errors due to the use of LDA orbitals
when calculating σ ACFDT

XC . In this respect, the values of σEXX are marginally affected if we use
mWDA-KS orbitals instead of LDA ones (see table 2). Prospective calculations (the ACFDT
is much more expensive to implement than the mWDA) indicate that this is also the case for
the ACFDT correlation contribution. Considering the above discussion about the stability of
the kinetic and electrostatic contributions, we can conclude that the errors related to the use of
LDA orbitals in prescriptions based on time-dependent DFT to evaluate surface energies are
not important at all. However, we must point out that this does not mean that LDA orbitals
were appropriate if we intend to evaluate excited-state properties. The ACFDT energies are
integrated quantities, but specific spectral properties are affected by the properties of isolated
KS eigenvalues and eigenenergies which, as commented in the introduction, depend on the
quality of the XC potential. The discussion of the properties of such an XC potential will be
the topic of the next section.

4. XC potential and image-like behaviour

The term image potential designates the asymptotic form of the potential that an electron feels
when it is placed in front of a metallic surface. This name is taken from the classical analogy
of a test charge interacting with its image charge inside the metal. One can obtain this same
asymptotic behaviour when considering the quantum case, as Bardeen showed in 1940 [57].
The validity of this asymptotic form for the XC potential was demonstrated by Almbladh and
von Barth [23] and Sham [24] but, despite this analogy, one should not forget that a fictitious
KS electron is not the same as an interacting test charge placed outside a metal surface. The
rigorous study of the interaction between an electron placed outside a surface with the bulk
electrons requires the use of many-body theory, in which the additional electron has to be
considered as a quasiparticle excitation [31, 58, 59]. Deisz and collaborators [58] have shown
that for a jellium surface the local, real and static XC potential vXC(z) is a good approximation
to the real part of the non-local, complex and dynamic self-energy that a quasielectron feels
outside the surface. Thus, an approximate vXC(z) exhibiting the right asymptotic behaviour
can be used to obtain a first approximation to the wavefunction and energy of this quasiparticle.
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Figure 2. XC potentials, vXC(z), for jellium slabs (rs = 4) with different slab thickness (shown in
the figure in au). In all cases the right jellium edge is located at z = 0. Note that, at a first glance,
the XC potential outside the surface does not depend on the slab thickness.

On the other hand, a proper vXC(z) should be used when evaluating the properties of neutral
excitations like surface plasmons. However, since these collective excitations are confined in
the metal/vacuum interface, it is likely that the image-like behaviour will have a minor role
when determining surface plasmon properties [60].

The image-like behaviour of the XC potential

vXC(z) = − 1

4(z − z0)
+ c

z3
+ · · · , (7)

is due to long-range Coulomb correlations that, of course, are not described by the LDA
and extensions thereof. These approximations incorrectly transmit into vXC the exponential
shape of the density outside a metal surface. As commented, the non-local weighted density
approximation WDA is able to provide a behaviour proportional to z−1 but with a wrong factor,
and the mWDA is the only explicit functional approximation that shows the right asymptotic
behaviour (7). These features have been already illustrated in figure 1, but now we wish to
present a deeper study focused on the effective image plane position z0, which is obtained by
fitting the mWDA potential deep inside the vacuum by the expression (7).

First of all, for each rs we need to determine the dependence of z0 versus the thickness L of
the jellium slab used to mimic an actual jellium/vacuum interface. As we may see in figure 2,
the asymptotic behaviour of vXC seems to be completely independent of the slab thickness.
However, z0 is a very delicate quantity, as reflected by the fact that changes of five units in the
fourth significant digit in vXC leads to one unit changes in the second significant digit of z0.
This implies that we have to face not only the unavoidable numerical uncertainties in the fitting
procedure, but also the oscillatory behaviour exhibited by z0 when increasing the slab widths
(see figure 3). The amplitudes of such oscillations seem to be rather independent of the jellium
mean density except for rs = 2, where the fitting procedure is not fully stable. In fact, those
amplitudes are of the same order of magnitude as the fitting uncertainties. As a result we can
obtain (with the exception mentioned for rs = 2) the final value of z0 with a reasonable relative
error, as presented in table 3.

It is interesting to compare z0 with its semiclassical counterpart, zc
0, defined as the centroid

of the induced charge at the metal surface due to the quantum response to the presence of a
classical test charge located deep inside the vacuum. This test charge generates an electric
field that is practically uniform at the surface, thus the evaluation of zc

0 can be done preserving
the translational symmetry of the problem [60–62]. In figure 3 we compare z0 and zc

0 for
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Figure 3. The image-plane position z0 (full circles), found from the mWDA vXC(z) asymptotic
behaviour, is compared with the centroid zc

0 of the density induced by an external test-charge for
different slab thicknesses (L) and bulk densities. zc

0 is obtained using the mWDA (——) and the
LDA (– – –). Note that, regardless of the specific geometry, z0 is always less than zc

0. Typical error
bars related to the fitting procedure required to obtain z0 are also included.

Table 3. The extrapolated values of the mWDA image-plane position z0 compared with the
semiclassical counterpart zc

0 obtained with the mWDA and LDA. We also include the image-plane
position from a LDA-based semi-empirical matching procedure [33] reported in [36]. The marginal
discrepancies between our LDA values and those reported previously [61, 62] are solely due to the
use of different parameterizations of the homogeneous electron gas XC energy.

rs z0 (fit from vmWDA
XC ) zc

0 (mWDA) zc
0 (LDA) Matching

2 1.53 ± 0.06 1.56 ± 0.02 1.54 ± 0.02 1.56
3 1.28 ± 0.04 1.35 ± 0.02 1.31 ± 0.02 1.37
4 1.17 ± 0.04 1.25 ± 0.02 1.22 ± 0.02 1.28
5 1.10 ± 0.03 1.21 ± 0.02 1.17 ± 0.02 1.23
6 1.07 ± 0.03 1.19 ± 0.02 1.13 ± 0.02 1.19

different rs and slab thicknesses L, zc
0 being obtained using the LDA and the mWDA. As we

may see, the mWDA non-local treatment of XC effects increases the value of zc
0 with respect

to the LDA, a trend that is also exhibited by the standard WDA [37]. However, this mWDA
zc

0 is clearly greater than z0. In other words: under the mWDA, the centroid of the induced
density by an external classical test-charge zc

0 is greater than the position of the image-plane
z0 given by the asymptotic behaviour of the XC potential. Moreover, the difference between
both quantities increases as the bulk mean density decreases. The final extrapolated values are
presented in table 3. For completeness, we also include the image-plane position obtained by
Kiejna [36] using a semi-empirical recipe proposed by Serena and collaborators [33]. Under
this scheme, the correct image-like limit of the XC potential is extrapolated from the LDA
one at the metal/vacuum interface through a self-consistent matching procedure. Note that this
prescription gives quite similar results as the mWDA centroid zc

0 and, therefore, they are greater
than the mWDA image-plane position z0.

8
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These quantitative differences between z0 and zc
0 have been already shown [59, 63–65]

by obtaining the asymptotic behaviour of vXC(z) using many-body perturbation theory. This
procedure (see the review [31] for further details) allows a reliable description of the subtle
correlation effects that appear in a surface system. However, a complete comparison between
the mWDA and the many-body results is not possible since both approaches behave differently
in the bulk limit, where the mWDA is exact by construction. It is very likely that the actual
value of z0 will lie between the mWDA values and the many-body ones reported in [59, 63, 64],
but this is still an open issue. Nevertheless, bearing in mind that the mWDA is based
on a modelization that depends explicitly on the density, its capability to describe at least
qualitatively the different nature of z0 and zc

0 is a success of this functional approximation.

5. Conclusions

In this paper we have implemented, for the first time, a DFT calculation of the ground-
state properties of a metal surface using a non-local approximation (mWDA) to the XC
energy functional whose functional derivative is exact in the bulk limit and, at the same time,
exhibits the proper image-like asymptotic behaviour outside the surface. As expected, the
self-consistent density so obtained is very similar to the one obtained using the local density
approximation. As a by-product, we have assessed the quality of the LDA approximation as a
starting point of sophisticated calculations of the surface energy, confirming its reliability.

The image-plane position z0 and the centroid of the induced density by an external test-
charge zc

0 given by the mWDA show the same trends as the ones obtained using the much
more involved many-body perturbation theory. Although we believe that the mWDA still
overestimates the actual value of z0, further many-body studies are required to confirm this
point since the actual behaviour of the XC potential is still under debate [66]. Nevertheless,
the calculations presented in this paper show that the mWDA self-consistent functional
approximation is an optimal starting point for the evaluation of excited-state properties either
using many-body perturbation theory or time-dependent density functional theory.
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[16] Garcı́a-González P, Alvarellos J E, Chacón E and Tarazona P 2002 Int. J. Quantum Chem. 91 139
[17] Görling A and Levy M 1994 Phys. Rev. A 50 196
[18] Seidl A, Görling A, Vogl P, Majewski J A and Levy M 1996 Phys. Rev. B 53 3764
[19] Perdew J P, Kurth S, Zupan A and Blaha P 1999 Phys. Rev. Lett. 82 2544
[20] Sánchez-Friera P and Godby R W 2000 Phys. Rev. Lett. 85 5611
[21] Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401
[22] Soler J M 2004 Phys. Rev. B 69 195101
[23] Almbladh C-O and von Barth U 1985 Phys. Rev. B 31 3231
[24] Sham L J 1985 Phys. Rev. B 32 3876
[25] Lang N D and Kohn W 1970 Phys. Rev. B 1 4555
[26] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[27] Binning G, Garcı́a N, Rohrer H, Soler J M and Flores F 1984 Phys. Rev. B 30 4816
[28] de Andrés P, Flores F, Echenique P M and Ritchie R 1987 Europhys. Lett. 3 101
[29] Echenique P M and Pendry R 1978 J. Phys. C: Solid State Phys. 11 2065
[30] Echenique P M, Pitarke J M, Chulkov E V and Rubio A 2000 Chem. Phys. 251 1
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